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a b s t r a c t 

Previous studies have demonstrated that the brain functional modular organization, which is a fundamental 
feature of the human brain, would change along the adult lifespan. However, these studies assumed that each 
brain region belonged to a single functional module, although there has been convergent evidence supporting the 
existence of overlap among functional modules in the human brain. To reveal how age affects the overlapping 
functional modular organization, this study applied an overlapping module detection algorithm that requires 
no prior knowledge to the resting-state fMRI data of a healthy cohort ( N = 570) aged from 18 to 88 years 
old. A series of measures were derived to delineate the characteristics of the overlapping modular structure 
and the set of overlapping nodes (brain regions participating in two or more modules) identified from each 
participant. Age-related regression analyses on these measures found linearly decreasing trends in the overlapping 
modularity and the modular similarity. The number of overlapping nodes was found increasing with age, but the 
increment was not even over the brain. In addition, across the adult lifespan and within each age group, the 
nodal overlapping probability consistently had positive correlations with both functional gradient and flexibility. 
Further, by correlation and mediation analyses, we showed that the influence of age on memory-related cognitive 
performance might be explained by the change in the overlapping functional modular organization. Together, our 
results revealed age-related decreased segregation from the brain functional overlapping modular organization 
perspective, which could provide new insight into the adult lifespan changes in brain function and the influence 
of such changes on cognitive performance. 
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. Introduction 

Lifespan research has become a hot spot with the intensification of
lobal aging ( Bookheimer et al., 2019 ). In neuroscience, mapping how
he human brain network (i.e., human connectome) changes across the
ifespan can enhance our understanding of neurocognitive development
nd decline ( Zuo et al., 2017 ). Recent studies usually explore the age-
elated changes of functional brain network by topological measures of
raph theory ( Cao et al., 2014 ; Chandan et al., 2018 ; Sala-Llonch et al.,
014 ). Specifically, previous studies on brain functional networks have
ound the inverted-U trajectories of the local efficiency over the lifespan
 Cao et al., 2014 ), and age-related linearly increase in the shortest-path
ength and the average clustering coefficient ( Sala-Llonch et al., 2014 ).
dditionally, the nodal betweenness was found to decrease in the frontal

obe and occipital lobe while the nodal degree and the nodal efficiency
ncreased in the posterior frontal lobe and parietal lobe over the lifespan
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 Chandan et al., 2018 ). These findings implied that age could impact on
oth functional segregation (i.e., local efficiency and clustering coeffi-
ient) and integration (i.e., shortest-path length and nodal betweenness)
f the brain network. 

Modules, which are derived from a decomposition of the network,
re subcomponents that are internally strongly coupled but externally
eakly coupled. As an important topological characteristic of the
uman brain functional network, the functional modular organization
as been widely studied ( Alexander-Bloch et al., 2010 ; Bordier et al.,
018 ; Calhoun et al., 2008 ; Jones et al., 2012 ; Liao et al., 2017 ;
eunier et al., 2009a, 2010 ). Three essential features of the functional
odular organization have been revealed: 1) the identification of
odules has shown high reproducibility in each individual ( Guo et al.,
012 ); 2) each module corresponds to specific cognitive performance
 Sadaghiani and Kleinschmidt, 2013 ), such as the visual networks
VIS) supports visual perception ( Van Den Heuvel and Pol, 2010 )
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nd the fronto-parietal networks (FPN) is involved in initiating and
djusting control ( Dosenbach et al., 2008 ); 3) modularity may promote
rain adaptation and increase flexibility in response to a changing
nvironment ( Sporns and Betzel, 2016 ) and prevent catastrophic
orgetting ( Ellefsen et al., 2015 ). Modules are subnetworks tightly
onnected within but loosely connected with others ( Sporns and
etzel, 2016 ). Therefore, neuroscientists often named modules as
etworks, e.g., visual network, default mode network ( Geerligs et al.,
015a ; Grady et al., 2016 ; Moraschi et al., 2020 ; Power et al., 2011 ;
ieck et al., 2021 ; Yeo et al., 2011 ). In this article, to maintain con-
istency with previous literature and help readers strictly distinguish
he concept of modules and networks, we only referred modules as
etworks when a prior modular partition was used and the mod-
les were already named as networks in the prior. Recently, several
tudies have been focusing on the age-related changes in the brain
unctional modular organization and suggested that brain segregation
educes as age increases ( Chan et al., 2014 ; Meunier et al., 2009a ;
preng et al., 2016 ). Specifically, lower modularity with weaker
ntra-module functional connectivity but stronger inter-module
unctional connectivity was continuously observed across the
ifespan ( Chan et al., 2014 ; Geerligs et al., 2015a ; Spreng et al.,
016 ). The age-accompanied functional modular changes were
ainly located in the default mode network (DMN), dorsal

ttention network (DAN), VIS, and FPN ( Betzel et al., 2014 ;
assady et al., 2020 ; Ferreira and Busatto, 2013 ; Grady et al.,
016 ; Puxeddu et al., 2020 ; Spreng et al., 2016 ). Additionally, these
ge-related changes of the functional modular structure were found as-
ociated with cognitive control and attention performance ( Betzel et al.,
014 ). 

Currently, the module detection methods used in the above age-
elated studies mainly focused on non-overlapping modules, that is,
ach brain region only belongs to a single module. However, neu-
oimaging studies have suggested that the human brain functional
etwork is more likely to bear an overlapping modular organization
 Lin et al., 2018 ; Najafi et al., 2016 ; Yeo et al., 2014 ), in which a
rain region can participate in more than one functional module. Previ-
us studies not only provided rich evidence to support the existence of
verlap among functional modules ( Bassett et al., 2011 ; Bullmore and
porns, 2009 ; Fries, 2005 ; Power et al., 2013 ), but also implied that the
oncept of overlap may pave the way to interpret the flexible and vari-
ble relationships between the human brain and cognitive functions in a
ore realistic manner ( Lin et al., 2018 ; Yeo et al., 2015 ). In particular, it
ould be of great interest to study how the overlapping functional mod-
lar structure, including the overlapping modules and the overlapping
odes, change across the adult lifespan and how such change induces
nd/or affects the cognitive functions. However, to date, few studies
ave examined the changes in overlapping functional modules across
he adult lifespan. 

To address this issue, we employed resting-state functional mag-
etic resonance imaging (R-fMRI) to explore the overlapping modular
rganization of the human brain functional network in 570 healthy par-
icipants across the adult lifespan (18–88 years). Firstly, the maximal-
lique based multiobjective evolutionary algorithm (MCMOEA;
en et al., 2016 ; Lin et al., 2018 ) was used to identify the overlapping

rain functional modular structure of each participant. Secondly,
ased on the overlapping modules detected, we respectively exam-
ned the changing trajectories of the overlapping modules and the
verlapping nodes during adult lifespan by regression models and age-
ased group comparisons. Then, we revealed the functional features
f the nodal overlapping probability through functional gra-
ient and flexibility analyses. Finally, we examined how the
haracteristics of overlapping modules and nodes were related
o fluid intelligence and the Benton face recognition test per-
ormance, both of which could effectively measure individ-
al memory capacity and were already found sensitive to age
 Feng et al., 2020 ; Kievit et al., 2014 ). 
2 
. Materials and methods 

.1. Participants 

Data of 649 participants [age range 18–88 years; mean = 59.24,
tandard deviation (SD) = 18.55] were obtained from the second stage
f the Cambridge center for Ageing and Neuroscience (Cam-CAN)
 http://www.cam-can.org , Shafto et al., 2014 ). Among these partici-
ants, 79 participants were excluded for having one of the following
ssues: missing data (4 participants), image artifacts (6 participants),
nd excess head motion (69 participants, details please see “Data ac-
uisition and preprocessing ”). Thus, a final sample of 570 participants
age range 18–88 years, mean = 52.88, SD = 18.44, 287 females) was
ncluded in our main analyses. All these participants fulfilled the fol-
owing requests: (1) completed the full MRI testing session and no ab-
ormal anatomical structure was observed, (2) scored at least 25 on the
ini mental state examination, (3) had no contraindications to MRI, (4)
ere native or bilingual English speakers, (5) had normal or corrected-

o-normal vision and hearing and (6) no head injury or neurological
isorders ( Shafto et al., 2014 ). Ethical approval was obtained from the
ambridge shire Research Ethics Committee and all participants gave
heir written informed consent prior to participation. 

.2. Data acquisition and preprocessing 

The MRI data were collected on a 3T Siemens TIM Trio Sys-
em, with a 32-channel head coil. Resting-state fMRI (R-fMRI) data
ere obtained using an echo-planar imaging sequence parameters:

epetition time (TR)/echo time (TE) = 1970 ms/30 ms, flip an-
le = 78°, number of slices = 32, slice thickness = 3.7 mm, voxel
ize = 3 mm × 3 mm × 4.44 mm, field of view (FOV) = 192 mm × 192 mm
nd total volumes = 261. The 3D T1-weighted structural images were ac-
uired using Magnetization Prepared Rapid Acquisition Gradient-Echo
ulse sequences. The sequence parameters were 1 × 1 × 1 mm 

3 reso-
ution, TR/TE = 2250 ms/2.99 ms, inversion time (TI) = 900 ms, flip
ngle = 9°, and FOV = 256 × 240 × 192 mm 

3 . More details of the data
ollection can be found in Shafto et al. (2014) . 

Image preprocessing for R-fMRI was carried out using the
ata Processing Assistant for Resting-State fMRI (DPARSF)
 http://rfmri.org/DPARSF , Yan and Zang, 2010 ) toolbox and SPM8
 http://www.fil.ion.ucl.ac.uk/spm ). For each participant, the first six
olumes were discarded. The realignment was performed after slice
iming to the first volume to correct head motion. Sixty-nine partici-
ants were excluded for excess head motion (more than 2 mm or 2°).
hen, the T1-weighted image was coregistered to the mean functional

mage after motion correction and then segmented into gray matter,
hite matter and cerebrospinal fluid tissue images. The head motion

orrected functional images were further spatially normalized to the
ontreal Neurological Institute (MNI) space using the parameters

stimated from T1 unified segmentation ( Ashburner and Friston, 2005 )
nd were resampled into 3-mm isotropic voxels. Finally, the normalized
unctional images were detrended, regressed out the nuisance variables
Friston’s 24 head motion parameters, global signal, white matter,
nd cerebrospinal fluid signals) and temporal band-pass filtered to
.01–0.08 Hz. 

.3. Construction of brain functional networks 

The brain functional network construction was carried
ut using the graph theoretical network analysis (GRETNA)
 http://www.nitrc.org/projects/gretna/ , J. Wang et al., 2015 ). For each
articipant, we parcellated the whole brain into 264 regions/nodes
 Power et al., 2011 ). Then, we computed the Pearson correlation
oefficient between time series of each pair of nodes and generated a
64 by 264 symmetric correlation matrix. Considering the ambiguous
iological explanation of negative correlations ( Fox et al., 2009 ;

http://www.cam-can.org
http://rfmri.org/DPARSF
http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/gretna/


Y. Gu, L. Li, Y. Zhang et al. NeuroImage 253 (2022) 119125 

M  

t  

n  

s

2

 

w  

(  

s  

p  

t  

m  

s  

r  

w  

t  

2
 

a  

d  

w  

t  

m  

e  

n  

u  

g  

d
b  

t  

d  

n  

d  

s  

m  

t  

r  

i  

w  

i  

w

2

 

l  

m  

s  

t  

t
d  

O

𝐶

w  

w  

s  

𝑀

𝑀

w  

𝑛  

n  

c  

s
 

o  

p  

t  

i  

Y  

fi  

t  

p  

i  

i  

c  

n  

r  

(  

o  

C  

c

𝑀

w  

t  

l  

2  

w  

t  

a
 

n  

p  

o  

p  

T  

s  

m  

D  

m  

s  

t  

d  

t  

a  

o  

e
 

o  

a  

s  

b  

p  

s  

t  

B  

m  

a  

o  

t  

i  

t  

y  
urphy et al., 2009 ), we only preserved positive correlations and set
he negative correlations as zeros. A binary and undirected functional
etwork was then constructed by thresholding the matrix with 15%
parsity. 

.4 Detection of overlapping modules 

To detect individual overlapping modules in the brain functional net-
ork, the maximal-clique-based multiobjective evolutionary algorithm

MCMOEA) ( Lin et al., 2018 ; Wen et al., 2016 ) was used. Without as-
uming the number of overlapping modules, this algorithm evolves a
opulation of candidate overlapping modular structures through cus-
omized operators to achieve optimal tradeoff between two objectives:
aximizing the intra-link density whilst minimizing the linter-link den-

ity of modules. The MCMOEA has been found advantageous over a va-
iety of state-of-the-art algorithms in both synthetic and real-world net-
orks ( Wen et al., 2016 ), and it has been successfully applied to detect

he overlapping modular structure of healthy young adults ( Lin et al.,
018 ). 

The application procedure of MCMOEA used in this study was similar
s that introduced by Lin et al. (2018) . Firstly, a population of 100 can-
idate overlapping modular structures were generated. Each of them
as linked to a single-objective optimization problem, which was ob-

ained by using the Tchebycheff approach to decompose the original
ultiobjective optimization problem ( Miettinen, 2012 ). The MCMOEA

volved the population with customized operators until the maximum
umber of generations reaches 10,000, or the population has not been
pdated for 500 consecutive generations. The population of the final
eneration was then returned as the result, which contained 100 non-
ominated overlapping modular structures with near-optimal tradeoff
etween intra- and inter-link density. Due to the probabilistic algorithm,
he MCMOEA was run for 100 times. Then, we applied the fast non-
ominated sorting approach ( Deb et al., 2002 ) to find the nondomi-
ated solutions among the resulting 10,000 solutions. After removing
uplicate solutions, the similarity between two different nondominated
olutions was calculated by the generalized normalized mutual infor-
ation (gNMI; Lancichinetti et al., 2008 ). The gNMI is an extension of

he mutual information in the overlapping context and has been proven
eliable ( Danon et al., 2005 ). Higher gNMI scores imply greater similar-
ty between two overlapping modular structures. Therefore, the solution
ith the maximum average gNMI was supposed to reveal the most typ-

cal and robust overlapping modular structure of each participant and
as thus selected for subsequent analyses ( Lin et al., 2018 ). 

.5. Analyses of overlapping modules and overlapping nodes 

We derived three measures to capture the characteristics of over-
apping modules at the individual level: (1) the number of overlapping
odules; (2) the overlapping modularity score, which can be used to de-

cribe segregation, was proposed by Lázár et al. (2009) for evaluating
he properness of an overlapping modular structure based on the con-
rast between densities of inter- and intra-module connections. Let C i , r 
enote the connectivity contribution of node i to an overlapping module
M r , i.e., 

 𝑖,𝑟 = 

∑
𝑗∈𝑂 𝑀 𝑟 , 𝑖 ≠𝑗 

𝑎 𝑖,𝑗 − 

∑
𝑗∉𝑂 𝑀 𝑟 

𝑎 𝑖,𝑗 

𝑑 𝑖 

here 𝑎 𝑖,𝑗 denotes an element in the adjacency matrix of the network,
ith 𝑎 𝑖,𝑗 = 1 for nodes i and j being connected and 𝑎 𝑖,𝑗 = 0 for the oppo-

ite, 𝑑 𝑖 denotes the degree of node i . Then the overlapping modularity
 

𝑜𝑣 is calculated 

 

𝑜𝑣 = 

1 
𝐾 

𝐾 ∑
𝑟 =1 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
∑

𝑖 ∈𝑂 𝑀 𝑟 

𝐶 𝑖,𝑟 

𝑠 𝑖 

𝑛 𝑟 
×

𝑛 𝑒 
𝑟 ( 

𝑛 𝑟 
2 

) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

3 
here 𝑠 𝑖 is the number of overlapping modules node i belongs to, 𝑛 𝑟 and
 

𝑒 
𝑟 

are the numbers of nodes and edges in OM r , respectively, and K is the
umber of overlapping modules. (3) the modular similarity, which was
alculated as the average gNMI score between the overlapping modular
tructures of the current participant and of the specified counterparts. 

The existence of overlapping nodes (i.e., nodes participating in two
r more functional modules) is the signature that distinguishes overlap-
ing modular structure from traditional non-overlapping modular struc-
ure, and previous studies have revealed their important roles in promot-
ng network communication and functional flexibility ( Lin et al., 2018 ;
eo et al., 2014 ). To capture the characteristics of overlapping nodes, we
rstly delineated the spatial pattern of overlapping nodes by visualizing
he distribution of the nodal overlapping probability, with the overlap-
ing probability of each node estimated as the percentage of participants
n whose modular structure the corresponding brain region participated
n two or more modules. Then, four individual-level measures were cal-
ulated based on the overlapping nodes: (1) the number of overlapping
odes; (2) the membership diversity of overlapping nodes, which was
eflected by the numbers of nodes participating in k modules ( k ≥ 2);
3) the modular overlapping percentage regarding the ten classic non-
verlapping functional modules specified by Power et al. (2011) and
ole et al. (2013) (the cerebellum and the unknown modules were ex-
luded to facilitate interpretation) was calculated as 

 𝑃 𝑛 
𝑎 
= 

𝑀 

𝑛 
𝑂 𝑁 𝑎 

𝑂 𝑁 a 

here 𝑂 𝑁 a denotes the total number of overlapping nodes in the func-
ional brain network of participant a , and 𝑀 

𝑛 
𝑂 𝑁 𝑎 

is the number of over-

apping nodes in n -th classic non-overlapping functional module ( n = 1,
, …, 10). (4) the variability in the spatial locations of overlapping nodes
ith other participants, which was calculated as the average Jaccard dis-

ance between the sets of overlapping nodes from the current participant
nd the specified counterparts. 

It should be emphasized that these seven individual measures were
ot fully independent as they were all derived from the same overlap-
ing modular structure. Yet they focused on different aspects of the
verlapping modular structure. In particular, the number of overlap-
ing modules showed the granularity of the brain functional network.
he modularity evaluates the properness of an overlapping modular
tructure based on the contrast between densities of inter- and intra-
odule connections, and can be used to describe segregation ( Cohen and
’Esposito, 2016 ; Rubinov and Sporns, 2010 ). Both the overlapping
odule similarity and overlapping node variability stand for the inter-

ubject variance, while the former focuses on the overall module struc-
ure and the latter lays more emphasis on overlapping node spatial
istribution. The membership diversity of overlapping nodes gives de-
ailed information on the extent of overlap between modules. Addition-
lly, the modular overlapping percentage in each of the ten classic non-
verlapping modules described the proportion of overlapping nodes in
ach classic module. 

Based on the above measures, we then analyzed the effect of age
n the overlapping modular structure in two ways. Firstly, using age
s the independent variable, each of the seven individual-level mea-
ures as the dependent variable and gender as the covariate, we built
oth linear and quadratic regression models to test whether age can
redict the changes of the modular structure. Note that for the two mea-
ures of modular similarity and spatial variability of overlapping nodes,
he counterpart herein referred to the entire set of participants. The
ayesian information criterion (BIC) ( Schwarz, 1978 ) was used to deter-
ine the optimal regression model for each measure between the linear

nd quadratic models, and the one-sample t -test was performed on the
ptimal model for examining the significance of predictors. Secondly,
o perform statistical comparisons to evaluate the age-related changes
n overlapping modular organization, we divided the participants into
hree age groups (Young: 18–45 years, 208 participants; Middle: 46–64
ears, 169 participants; Old: 65–88 years, 193 participants) to quantify
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he between-group differences in the above measures ( Backonja et al.,
018 ; Campbell et al., 2016 ; Samu et al., 2017 ). Notably, in the group-
ased analyses, the context for calculating the nodal overlapping prob-
bilities and the counterparts in the modular similarity and overlap-
ing node spatial variability referred to the participants in the same
ge group. The significance of the between-group difference was exam-
ned by the permutation test ( N = 10,000), which randomly shuffled
roup labels to build null models. The Bonferroni correction [ P < 0.017
0.05/3)] was used to counteract the potential bias induced by multiple
omparisons across the three age groups. 

To further explore whether and how the functional roles of overlap-
ing nodes were influenced by age, we computed the Pearson correla-
ion coefficients between the nodal overlapping probabilities and two
unctional indicators across the adult lifespan and the three age groups.
he two functional indicators were the nodal gradient and functional
exibility. In particular, the voxel-wise gradient map was built based on
radient 1 that depicted a principal gradient of cortical organization in
he human connectome ( Margulies et al., 2016 ). The principal gradient
as accounted for the greatest variance in functional connectivity in the
rain, and tracked a functional hierarchy from primary sensory process-
ng to higher-order functions such as social cognition ( Margulies et al.,
016 ). A high gradient value implies a larger contribution to higher-
rder functions. The voxel-wise functional flexibility values were de-
ived by Yeo et al. (2015) from 10,449 cognitive experiments, with a
arger value indicating a high probability of being activated by multi-
le cognitive components. The functional indicators for each of the 264
odes were then calculated by averaging the voxel-wise indicator values
ver all the voxels within the corresponding region. 

Finally, to assess whether and how the brain functional modu-
ar organization was related to the cognitive performance during the
dult lifespan, we computed the Pearson correlation coefficients be-
ween cognitive performance and each of the above individual-level
easures regarding overlapping modules/overlapping nodes. There has

een a general agreement that memory performance declines with age
 Craik, 1994 ). We thus chose two memory-related tasks (i.e., fluid in-
elligence and Benton face recognition test), on which performance has
hown age-related decreases in previous Cam-CAN studies ( Feng et al.,
020 ; Kievit et al., 2014 ). Fluid intelligence is the core of psychome-
ric analyses of intelligence, which has been defined as the ability to
hink logically and solve problems in the absence of task-specific knowl-
dge and has been found related to working memory ( Carpenter et al.,
990 ). Here, the fluid intelligence was calculated by the sum of Cattell
est score on four subtests ( Cattell, 1971 ). The summary score of the
enton face recognition test is a commonly used neuropsychological in-
trument that tested individual’s baseline visual perception and memory
 Benton et al., 1994 ). Higher scores of fluid intelligence and the Benton
ace recognition test imply better cognitive abilities, especially memory
erformance. Note that the correlation analyses were only performed
n the participants with the corresponding task data (fluid intelligence:
 = 553; Benton face recognition test: N = 550). To further explore
hether the individual-level overlapping module or node characteristics
ediated the age effects on cognitive performance, a mediation anal-

sis was performed using the PROCESS plugin in SPSS ( Hayes, 2017 ;
reacher and Hayes, 2004 , 2008 ). Then, the bootstrap ( n = 5000) was
erformed to assess the statistical significance of the mediation analysis,
or which a 95% confidence interval (CI) without zero was equivalent
o a significance level of 0.05 ( Preacher and Hayes, 2004 , 2008). 

.6. Validation analyses 

To evaluate the reproducibility of our results, we examined the in-
uences of head motion, global signal, and network sparsity. Firstly, al-
hough our main analyses have moderated the influence of head motion
y filtering participants and regressing related parameters ( Friston et al.,
996 ) in preprocessing ( Yan et al., 2013 ), we found the mean frame-
ise displacement (mFD; Jenkinson et al., 2002 ) positively correlated
4 
ith age in our data ( R = 0.44, P < 10 − 3 ). Therefore, we added mFD
s an additional covariate in all age-related regression analyses for val-
dation. Secondly, since previous studies have found that global signal
egression can introduce negative correlations and reshape the distribu-
ion of functional connectivity across the whole brain ( Fox et al., 2009 ;
urphy et al., 2009 ), we re-performed the main analyses on the data
ithout regressing out global signals. Finally, the network sparsity has
een found an influential factor on the results of mainstream module
etection algorithms, including MCMOEA ( Wen et al., 2016 ). For val-
dation, we repeated the main analyses over the sparsity of 10% and
0%. 

. Results 

.1. Adult lifespan changes of overlapping modules 

Among the three measures for characterizing the overlapping mod-
les, a significant influence of age was found on the overlapping modu-
arity ( Fig. 1 A-B) and the modular similarity ( Fig. 1 C-D), but not on the
umber of overlapping modules. In detail, the overlapping modularity
howed negative correlation with age ( R = − 0.204, P < 10 − 3 ; Fig. 1 A).
he overlapping modularity within the elderly group was significantly

ower than that of the other two age groups (Old < Young: P = 0.002;
ld < Middle: P < 10 − 3 ; Fig. 1 B). These results implied that the func-

ional segregation capability of the human brain gently decreased across
he adult lifespan. The modular structure similarity calculated in the
ontext of the entire population was found negatively correlated with
ge ( R = − 0.417, P < 10 − 3 ; Fig. 1 C). In addition, the modular structure
imilarity calculated within each age group coincided with the above
ecreasing trend, and the permutation test confirmed that the differ-
nces of the modular structure similarity between age groups were all
ignificant (Young > Middle > Old: all P < 10 − 3 ; Fig. 1 D). These re-
ults suggested that the overlapping modular structure of the human
rain functional network was getting more individual variability as age
ncreased. 

.2. Adult lifespan changes of overlapping nodes 

The distribution of nodal overlapping probabilities calculated from
he entire population of participants and each of the three age groups
Fig. S1). Overall, the nodal overlapping probability calculated from
he whole population was higher in the superior frontal gyrus, inferior
rontal gyrus, inferior parietal gyrus, and insula, but lower mainly in the
ostcentral gyrus, parahippocampal gyrus, lingual gyrus, cuneus gyrus,
nd occipital lobe (Fig. S1A). Similar distribution patterns were also ob-
erved in the three age groups (Fig. S1B-D). 

The number of overlapping nodes linearly increased along adult
ifespan ( R = 0.149, P < 10 − 3 , Fig. 2 A), particularly for overlapping
odes that participated in two and three overlapping modules ( k = 2:
 = 0.142, P = 0.001; k = 3: R = 0.131, P = 0.004; Fig. 2 B), but not for

he overlapping nodes participating in four or more modules ( k ≥ 4).
etween-group comparisons further confirmed that the old group had
ignificantly more overlapping nodes (Old > Young and Old > Middle:
ll P < 10 − 3 ; Fig. 2 C) and significantly higher membership diversity
 k = 2 or 3) (Old > Young and Old > Middle: all P ≤ 0.006; Fig. 2 D) than
ach of the other two age groups. Additionally, although the overlap-
ing nodes were found distributed in all the ten classic non-overlapping
odules, DMN had the largest modular overlapping percentage consid-

red either across the entire adult lifespan or within each age group
 Fig. 3 A-B). We found that the modular overlapping percentage linearly
ncreased with age in VIS ( R = 0.148, P = 0.002), but linearly decreased
n FPN ( R = − 0.129, P = 0.008; Fig. 3 C). Between-group comparison
nalyses also showed that compared with the old group, the modular
verlapping percentage of the young group was significantly lower in
IS ( P < 10 − 3 ) but remained higher in FPN with a marginally signifi-
ant difference ( P = 0.020, Bonferroni-corrected, Fig. 3 D). 
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Fig. 1. Lifespan changes in overlapping modules regarding (A & B) modularity and its between-group comparison, (C & D) modular similarity and its between-group 
comparison. In bar plot, the asterisk indicates significant between-group difference ( P < 0.05, 10,000 permutations, Bonferroni-corrected). 
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Further, Fig. 4 showed the regions whose overlapping probabilities
xhibited significant between-group differences, including 1) left su-
erior frontal gyrus between the young and middle groups (Middle >
oung, P < 10 − 3 ), 2) left thalamus and left superior parietal lobule be-
ween the young and old groups (Old > Young, P < 10 − 3 ), 3) left superior
rontal gyrus (Old < Middle, P < 10 − 3 ) and left thalamus between the
iddle and old groups (Old > Middle, P < 10 − 3 ). Moreover, the individ-
al variability in the spatial pattern of overlapping nodes decreased as
ge increased ( R = − 0.119, P = 0.005; Fig. 5 A), and significant differ-
nces were detected between the old group and each of the other two
roups (Old < Young: P < 10 − 3 , Old < Middle: P = 0.002; Fig. 5 B). 

.3. Adult lifespan changes in the functional characteristics of overlapping 

odes 

The nodal overlapping probability was found positively correlated
ith the gradient 1 map of Margulies et al. (2016) ( R = 0.397, P <
0 − 3 ; Fig. 6 A), and this positive correlation maintained within each age
roup (Young, R = 0.362, P < 10 − 3 ; Middle, R = 0.416, P < 10 − 3 ; Old:
 = 0.339, P < 10 − 3 ; Fig. 6 B). In addition, the nodal overlapping proba-
ility was also found positively correlated with the functional flexibility
ap of Yeo et al. (2015) ( R = 0.401, P < 10 − 3 ; Fig. 6 C). The positive

orrelations also maintained within each group (Young, R = 0.397, P <
0 − 3 ; Middle, R = 0.324, P < 10 − 3 ; Old, R = 0.394, P < 10 − 3 ; Fig. 6 D).
hese results revealed that the overlapping nodes tended to have higher
unctional gradient and flexibility. 

.4. Relationships between characteristics of overlapping modules or nodes 

nd cognitive performances 

Significant age-related decrease was found in fluid intelligence and
enton face recognition test score ( R = − 0.448, P < 10 − 3 ; R = − 0.669,
 < 10 − 3 ). Also, significant difference was found in these two indicators
5 
etween each pair of age groups by using the permutation test (all P <
.05). For fluid intelligence, we found that it had positive correlations
ith the overlapping modularity ( R = 0.167, P < 10 − 3 ), the modular

imilarity ( R = 0.367, P < 10 − 3 , Fig. 7 A). In contrast, we found that
uid intelligence had negative correlations with the number of over-

apping nodes ( R = − 0.134, P = 0.002), the number of overlapping
odes that participated in three overlapping modules ( k = 3: R = − 0.138,
 = 0.001), and the modular overlapping percentage in VIS ( R = − 0.156,
 < 10 − 3 , Fig. 7 B). As for the Benton face recognition test score, similar
s the patterns of fluid intelligence, it was found positively correlated
ith the overlapping modularity ( R = 0.149, P < 10 − 3 ) and the modu-

ar similarity ( R = 0.252, P < 10 − 3 , Fig. 7 C), but negatively correlated
ith the modular overlapping percentage in VIS ( R = − 0.148, P < 10 − 3 ,
ig. 7 D). Above results were all false discovery rate (FDR) corrected. 

Additionally, we found that the decrease in the overlapping modu-
ar similarity was associated with age (path a: 𝛽 = − 0.436, P < 10 − 3 ).
fter controlling the influence of age, the higher overlapping modular
imilarity was related to higher fluid intelligence (path b: 𝛽 = 0.092, P
 10 − 3 ). After considering the effect of overlapping modular similarity,

he effect of age on fluid intelligence was weakened (path c’: 𝛽 = − 0.629,
 < 10 − 3 , from path c: 𝛽 = − 0.669, P < 10 − 3 , Fig. 8 A). This mediation
nalysis revealed that overlapping modular similarity was a significant
ediator (indirect effect = − 0.040, 95% CI = [ − 0.068, − 0.013]) and

ould partially explain the negative association between age and fluid
ntelligence ( Fig. 8 A). Besides, we found that the increase of the mod-
lar overlapping percentage in VIS was associated with age (path a:
= 0.149, P < 10 − 3 ). After controlling the influence of age, the higher
odular overlapping percentage in VIS was related to the lower Ben-

on face recognition test score (path b: 𝛽 = − 0.077, P < 10 − 3 ). After
onsidering the effect of modular overlapping percentage in VIS, the ef-
ect of age on Benton face recognition test score was weakened (path c’:
= − 0.473, P < 10 − 3 , from path c: 𝛽 = − 0.484, P < 10 − 3 , Fig. 8 B). This
ediation analysis revealed that modular overlapping percentage in VIS
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Fig. 2. Lifespan changes in overlapping nodes (ON) regarding (A) number, (B) the membership diversity, the between-group comparison of (C) number and (D) 
the membership diversity. The light blue nodes denote participants, and dark blue lines denote the aging regression line for linear model. In bar plot, the asterisk 
indicates significant between-group difference ( P < 0.05, 10,000 permutations, Bonferroni-corrected). 
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as a significant mediator (indirect effect = − 0.011, 95% CI = [ − 0.026,
 0.001]) and could partially explain the negative association between
ge and Benton face recognition ( Fig. 8 B). 

.4. Validation results 

We evaluated the influence of head motion, global signal, and net-
ork sparsity on our main results. The main results remained largely
nchanged in the former two conditions. As for global signal removal,
ost results coincided with our main findings, but some characteristics

e.g., number of overlapping nodes) were no longer significantly corre-
ated with age, which suggested that the adult lifespan changes might be
uried into systematic and physiological noise. For more details, refer
o the supplementary materials (Fig. S2 to Fig. S16). 

. Discussion 

In this study, we studied the change of the overlapping functional
odular organization across the adult lifespan. In terms of overlapping

unctional modules, the overlapping modularity and the modular simi-
arity both gradually declined linearly over the adult lifespan. In terms
f the overlapping nodes, the number increased linearly with age. As
or their distribution, the modular overlapping percentage linearly in-
reased in VIS but decreased in FPN with age. Besides, the individual
ariability in the spatial distribution of overlapping nodes linearly de-
reased over the adult lifespan. Both the nodal functional gradient and
6 
exibility were positively correlated with the nodal overlapping proba-
ility during the adult lifespan and in each age group. Finally, the age-
elated characteristics of overlapping modules and overlapping nodes
ere found correlated with memory-related cognitive performance. To-
ether, our results indicated lifespan decreased segregation of the brain
unctional modular organization, providing new insight into the age-
elated changes in brain function and behavioral performance. 

.1. Adult lifespan changes of overlapping modules 

Modularity, which measures how well a network can be decom-
osed into a set of sparsely inter-connected but densely intra-connected
odules ( Newman, 2004 ), is an advanced topological property of brain
etwork organization and can be used to evaluate functional segrega-
ion ( Meunier et al., 2009b ). The present study found that the over-
apping modularity of the brain functional network linearly decreased
ver the adult lifespan, which is consistent with the findings in non-
verlapping modularity studies ( Betzel et al., 2014 ; Cao et al., 2014 ;
eerligs et al., 2015a ). These consistent findings of declined modular-

ty in the elderly revealed that aged brains had decreased intra-module
unctional connectivity and increased inter-module functional connec-
ivity, which suggests the brain functional network of older people to
e less segregated or less differentiated ( Betzel et al., 2014 ; Chan et al.,
014 ; Geerligs et al., 2015a ). The dedifferentiation theory suggests that
veractivation of brain regions in the elderly during cognitive tasks may
e caused by the decrease in functional distinction between regions
 Baltes and Lindenberger, 1997 ; Park et al., 2004 ), which may further
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Fig. 3. Lifespan changes in overlapping nodes (ON) regarding (A & B) the distribution in ten classic non-overlapping modules, (C) the modular overlapping node 
percentage and (D) its between-group comparison. The light blue nodes denote participants, and dark blue lines denote the aging regression line for linear model. 
In bar plot, the asterisk indicates significant between-group difference ( P < 0.05, 10,000 permutations, Bonferroni-corrected). Abbreviations: FPN, fronto-parietal 
network; CON, cingulo-opercular network; SAN, salient network; DAN, dorsal attention network; VAN, ventral attention network; DMN, default mode network; SMN, 
somatosensory-motor network; AUD, audial network; VIS, visual network; SUB, subcortical network. 

Fig. 4. Between-group differences of the nodal overlapping ratio. The dark blue node indicates significant between-group difference ( P < 0.001, 10,000 permutation). 

Fig. 5. Lifespan changes in overlapping nodes (ON) regarding (A & B) 
similarity of spatial distribution. The light blue nodes denote partici- 
pants, and dark blue lines denote the aging regression line for linear 
model. In bar plot, the asterisk indicates significant between-group dif- 
ference ( P < 0.05, 10,000 permutations, Bonferroni-corrected). 

7 
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Fig. 6. Lifespan changes in the functional characteristics of overlapping nodes (ON) overlapping probability functional characteristics regarding (A & B) gradient 1, 
(C & D) functional flexibility. The light blue nodes denote participants, and dark blue lines denote the aging regression line for linear model. 

Fig. 7. Relationship between characteristics of overlapping modules (OM) or nodes (ON) and cognitive performances including (A & B) fluid intelligence and (C & D) 
Benton face recognition test. The light blue nodes denote participants, and dark blue lines denote the aging regression line for linear model ( P < 0.05, FDR-corrected). 

8 



Y. Gu, L. Li, Y. Zhang et al. NeuroImage 253 (2022) 119125 

Fig. 8. Mediating effects of overlapping module or node charac- 
teristics on lifespan changes in (A) fluid intelligence and (B) mem- 
ory stands for Benton face recognition test performance. Standard- 
ized regression coefficients were reported, and the asterisk indi- 
cates significant relationship. 
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nduce the functional module-level dedifferentiation, as observed in the
urrent study. Additionally, previous studies have suggested that there
ere associations between functional connectivity and structural con-
ectivity across the lifespan ( Betzel et al., 2014 ; Zimmermann et al.,
016 ; for review, see Damoiseaux, 2017 ). Betzel et al. (2014) found that
he decline in the number of structural connectivity and the network seg-
egation (i.e., non-overlapping modularity) of functional brain network
n the elderly. Meanwhile, the relationship between functional connec-
ivity and age depended on the length of shortest paths of structural
onnectivity. We thus speculated that our finding on the age-related de-
line in overlapping modularity might also be associated with the age-
elated changes in the number and the path length of structural con-
ectivity. Our findings provided direct support for the dedifferentiation
henomenon at the functional module level, which could also account
or the less distinctive neural representations in old age ( Li et al., 2001 ).

The overlapping modular similarity showed a significant decrease
uring the adult lifespan. This decreasing trend was also confirmed
mong age groups. It is consistent with previous studies, which found
hat the shape and size of modules in elderly are more variable than
hose of young adults ( Chen et al., 2021 ). Previous studies have also
emonstrated that the inter-individual functional connectivity variabil-
ty increased in the elderly ( Garzón et al., 2021 ; Geerligs et al., 2015b ;
a et al., 2021 ). Moreover, Song et al. (2014) found that the older

roup had a higher inter-individual variability in modularity and lo-
al efficiency. Wink (2019) found that the eigenvector centrality vari-
tion was less consistent in some modules (e.g., medial visual, execu-
ive control and left frontoparietal networks) among older adults. These
ndings were all supportive of the increased inter-individual functional
onnectivity variability in the older group, as our finding regarding the
ge-related decrease in overlapping modular similarity. Additionally,
arzón et al. (2021) has suggested that age-related connectome dissimi-

arity may be attributed to changes in gray matter density. Our results on
ecrease in overlapping modular similarity were consistent with those
f Garzon et al.’s, and thus might also imply similar change in the brain
tructure. The individual overlapping modular structure variability can
urther give rise to the growing individual difference in external cogni-
 l  

9 
ive/behavioral capability (e.g., fluid intelligence, motor performance,
emory) over the lifespan ( Carr et al., 2017 ; Grady, 2012 ; Ma et al.,
021 ). 

.2. Adult lifespan changes of overlapping nodes 

During the adult lifespan, regions in the superior frontal gyrus, infe-
ior frontal gyrus, inferior parietal lobe and angular gyrus were found
o have high overlapping probabilities, suggesting that these regions
ay play important roles in inter-module interaction. It is worth not-

ng that these regions are mainly located in modules serving as the
eural substrate of high-order cognitive functions. In particular, the su-
erior frontal gyrus, inferior frontal gyrus and angular gyrus belong
o DMN, and the inferior parietal lobe belongs to FPN. The poten-
ial roles of the DMN include working memory ( Greicius et al., 2003 )
nd the interplay between emotional processing and cognitive functions
 Gusnard et al., 2001 ; Raichle et al., 2001 ). The FPN is associated with
 wide variety of tasks by initiating and modulating cognitive control
bilities ( Dosenbach et al., 2008 ). Moreover, among the ten classic non-
verlapping modules ( Cole et al., 2013 ; Power et al., 2011 ), the overlap-
ing nodes detected over the entire adult lifespan and in all age groups
ere mainly concentrated in DMN. Additionally, we found that the re-
ions with low nodal overlapping probabilities (e.g., the postcentral
yrus, parahippocampal gyrus and lingual gyrus) were mostly involved
n primary functional modules. Thus, these results suggest that higher-
rder associative modules are more likely to embed overlapping nodes,
hich was largely compatible with previous overlapping module stud-

es in healthy young adults ( Lin et al., 2018 ; Yeo et al., 2014 ). Notably,
 similar nodal overlapping probabilities distribution existed over the
dult lifespan, suggesting relative preservation of the crucial roles of
hese regions. 

Besides the distribution of overlapping nodes, we also examined how
he characteristics of overlapping nodes changed during the adult lifes-
an. We found a significant linear increase of the overlapping node num-
er during the adult lifespan. Moreover, the old group had a significantly
arger overlapping node number than the other two groups did. The
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ncreased overlapping node numbers in the elderly implied that more
rain regions were involved in multiple modules, which may result in
ecreased modularity and less differentiation. The age-related increase
f the overlapping node membership diversity also supports this con-
ecture. Further, we found that the modular overlapping percentage in
IS linearly increased with age, which is probably related to previous
ndings that VIS has an age-related increase in inter-module functional
onnectivity ( Geerligs et al., 2015a ; Malagurski et al., 2020 ) and gradi-
nt values ( Bethlehem et al., 2020 ), suggesting that the role of VIS in
nter-network information communication becomes more important as
ge increases. On the other hand, the modular overlapping percentage
f FPN linearly decreased during the adult lifespan. The FPN, involved
n initiating and modulating control ( Dosenbach et al., 2008 ), was one of
he first modules to deteriorate as a result of aging ( Nyberg et al., 2010 ;
az et al., 1997 ). With the age-related increase in the total number of
verlapping nodes in each individual, the modular overlapping percent-
ge of FPN decreased relatively at the same time. Therefore, our results
ight provide a potential explanation for the impairment of cognitive

ontrol abilities in older people. 
Additionally, the overlapping probability of the region in the left

halamus was higher in the older group than in the other groups, indi-
ating that this region was more likely to participate in multiple func-
ional modules in older people. The thalamus is involved in multiple
ognitive functions, which is an integrative hub for functional brain
etworks ( Hwang et al., 2017 ). Previous studies have found that older
dults exhibited stronger functional connectivity between the thalamus
nd putamen, which highlights the potential role of enhanced thalamic
onnectivity in protecting the memory ability from aging ( Ystad et al.,
010 ). Also, the region in the left superior parietal lobule had higher
verlapping probabilities in the old group than in the young group,
hich was also associated with working memory ( Jager et al., 2006 ).
hus, we speculated that regions with higher overlapping probabilities

n the elderly might be the compensation for the age-related decrease
n functional connectivity. 

The results on the functional characteristics showed that the re-
ions with higher nodal overlapping probability tended to have higher
radient value and higher flexibility during the adult lifespan. This
ositive relationship was also confirmed in each age group. Previous
tudies have suggested that the regions with high gradience had the
reater variance in functional connectivity ( Margulies et al., 2016 ), and
ay contribute more to the implementation of higher-order functions

 Huntenburg et al., 2018 ). Moreover, the regions with higher flexibil-
ty are associated with a larger variety of cognitive components and
ay participate in more cognitive tasks ( Lin et al., 2018 ; Yeo et al.,
015 ). The above findings are thus another evidence for the important
unctional role of overlapping nodes across development and aging, in
articular for their effect in promoting brain system interplay ( Lin et al.,
018 ). It also implies the importance of analyzing overlapping structures
or understanding brain functional changes during the adult lifespan and
cross age groups. 

In general, we found that the indicators capturing decreased char-
cteristics of overlapping modules and overlapping nodes during the
dult lifespan (e.g., overlapping modular similarity) tended to have pos-
tive correlations with fluid intelligence and the Benton face recogni-
ion scores. Conversely, the indicators capturing increased character-
stics of overlapping modules and overlapping nodes during the adult
ifespan tended to have negative correlations. Combining these re-
ults with previous findings that fluid intelligence and the Benton face
ecognition test score was positively related to memory performance
 Benton et al., 1994 ; Cattell, 1971 ) and declined with age ( Feng et al.,
020 ; Kievit et al., 2014 ), we speculated that the age-related changes
n overlapping modules and overlapping nodes were closely associated
ith the age-accompanied decline in memory ability. For some weak

orrelations, they need to be interpreted with caution and require fur-
her validation in future studies. In addition, we found that the over-
apping modular similarity and the overlapping percentage of VIS par-
10 
ially mediated the negative associations of age with fluid intelligence
nd the Benton face recognition test score, respectively. Besides, the
ediation effect of overlapping modular similarity on lifespan changes

n fluid intelligence was maintained in most validation results. Thus,
he overlapping modular similarity might serve as a biomarker for ag-
ng. Together, these results further supported our conjecture that the
ge-related changes in the overlapping functional modular organization
ere possible neural representations of cognitive performance change
cross the lifespan. 

.3. Future consideration 

Several methodological limitations need further considerations.
irst, the functional atlas used in our study was obtained by exploring a
ombination of meta-analysis of functional connectivity in an adult pop-
lation ( Power et al., 2011 ). Ideally, individual functional atlas should
e determined by each participant-specific functional connectivity for
ndividual analysis. Several studies have focused on the methodology
f individualized functional atlas ( Cui et al., 2020 ; Kong et al., 2019 ;
. Wang et al., 2015 ). However, there is still not yet a uniformly recog-
ized golden method about the individualized functional atlas. Future
mprovement in atlas-related methodological research may help us to
urther validate and deepen our findings based on reliable individual-
zed functional atlas. Second, the current overlapping method MCMOEA
s only feasible for binary networks, because the concept of its first step,
he maximum cliques, do not applicable to weighted networks. Nev-
rtheless, the weights do carry additional information about the func-
ional connectivity and may help to gain further insights into overlap-
ing modules. Thus, a future direction is to extend and adapt MCMOEA
o weighted networks. Third, whether the global signals should be re-
oved is currently still debatable in the preprocessing procedure of the
-fMRI data. Both our study and previous ones have found relatively

arge differences between results with and without regressing out the
lobal signals ( Li et al., 2016 ; Murphy et al., 2009 ; Yang et al., 2014 ).
uture studies are necessary to propose better approaches to minimize
he noise in R-fMRI and to evaluate the optimal approaches to analyze
he global signals. Fourth, negative correlations were disregarded in
ur study as the physiological interpretations of negative correlations
n resting-state functional MRI remain ambiguous ( Murphy et al., 2009 ;
urphy and Fox, 2017 ; Fox et al., 2009 ; Telesford et al., 2011 ). This
ethod is widely used in functional brain network studies ( Lin et al.,
018 ; Sporns and Betzel, 2016 ; Wen et al., 2019 ; Zhang et al., 2021 ).
omputational methods and theories regarding topological analyses in
egative correlations and signed functional networks still need to be fur-
her developed. Fifth, previous findings showed that the age-related per-
usion changes in the human brain ( Grunewald et al., 2021 ; Salami et al.,
016 ; Staffaroni et al., 2019 ), and the perfusion level was also asso-
iated with functional connectivity ( Liang et al., 2013 ; Zhang et al.,
022 ). Thus, the age-related change in perfusion may also influence our
esults. Future studies should further validate our findings after elim-
nating the perfusion influence in fMRI data. Last, although the cur-
ent research dataset already covers a wide age range, it is still not a
ongitudinal/follow-up dataset that covers the whole adult lifespan of
ach participant. In the future, further validation based on true follow-
p data should be considered. 
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